
DYNAMIC PROGRAMMING 

 Dynamic programming is an algorithm design technique was invented by a prominent 

U.S. mathematician, Richard Bellman, in 1950 is a general method for optimizing 

multistage decision processes. 

 Dynamic programming is a technique for solving problems with overlapping 

subproblems. 

 These subproblems arise from a recurrence relating a solution to a given problem with 

solutions to its smaller subproblems of the same type. 

 Rather than solving overlapping subproblems again and again, each of the smaller 

subproblem is solved only once and the results are recorded in a table from which we can 

then obtain a solution to the original problem. 

 One example of this category is generating the Fibonacci numbers. 

 The Fibonacci numbers are the elements of the sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... , 

 Fibonacci numbers can be defined by the simple recurrence 

F(n) = F(n- 1) + F(n- 2) for n > 2 

and two initial conditions are 

 F(0) = 0, F(1) = 1. 

 

Computing a Binomial Coefficient 

 A binomial coefficient, denoted C(n, k), is the number of combinations (subsets) of k 

elements from an n-element set (0 ≤ k ≤ n). 

 The name "binomial coefficients" comes from the participation of these numbers in the 

binomial formula 

 

 The important properties of binomial coefficients are 

 

and 

 

 C(n, k) can be computed in terms of the smaller and overlapping problems of computing 

C (n - 1, k - 1) and C (n - 1, k), i.e. it tends itself to be  solved by the dynamic 

programming technique. 



 The computed vales of the binomial coefficients can be recorded in a table of n + 1 rows 

and k + 1 columns, numbered from 0 to n and from 0 to k. 

 

 To compute C(n, k), the above table has to be filled row by row, starting with row 0 and 

ending with row n.  

 Each row i (0 ≤ i ≤ n) is filled left to right, starting with 1 because C(n, 0) = 1.  

 Rows 0 through k also end with 1 on the table's main diagonal: C(i, i) = 1 for 0 ≤ i ≤ k. 

 Other entries can be computed using the above formula i.e. adding the contents of the 

cells in the preceding row and the previous column and in the preceding row and the same 

column. 

 The pseudocode for the algorithm is 

ALGORITHM Binomial(n, k) 

//Computes C(n, k) by the dynamic programming algorithm 

//Input: A pair of nonnegative integers  n ≥ k ≥ 0 

//Output: The value of C(n, k) 

for  i ← 0 to n do 

for  j ← 0 to min(i, k) do 

if  j = 0 or j = i 

C[i, j] ←1 

else  

C[i, j] ← C[i -1, j -1] + C[i -1, j] 

return C[n, k] 

 

 

 

 



 Example 

7
C3 = ? 

 0 1 2 3 

0 1    

1 1 1   

2 1 2 1  

3 1 3 3 1 

4 1 4 6 4 

5 1 5 10 10 

6 1 6 15 20 

7 1 7 21 35 

 Time efficiency 

 The algorithm's basic operation is addition. 

 Here, the first k + 1 rows of the table form a triangle while the remaining n - k rows 

form a rectangle, we have to split the sum expressing A (n, k) into two parts: 

 The total number of additions is 
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